
1
Fundamentals of Magnetic Theory

This chapter gives a brief review of the basic laws, quantities, and units of
magnetic theory. Magnetic circuits are included together with some examples.
The analogy between electric and magnetic circuits and quantities is pre-
sented. Hysteresis and basic properties of ferromagnetic materials are also
discussed. The models of the ideal transformers and inductors are shown.

1.1 Basic Laws of Magnetic Theory

The experimental laws of electromagnetic theory are summed up by the Max-
well equations. In 1865, after becoming acquainted with the experimental results
of his fellow Englishman Faraday, Maxwell gave the electromagnetic theory a
complete mathematical form. We will present specific parts of the Maxwell
equations: Ampere’s law, Faraday’s law, and Gauss’s law, which together with
Lenz’s law are the basis of magnetic circuit analysis. These are the laws that are
useful in the design of magnetic components for power electronics.

1.1.1 Ampere’s Law and Magnetomotive Force

When an electrical conductor carries current, a magnetic field is induced
around the conductor, as shown in Fig. 1.1. The induced magnetic field is
characterized by its magnetic field intensity H. The direction of the magnetic
field intensity can be found by the so-called thumb rule, according to which,
if the conductor is held with the right hand and the thumb indicates the
current, the fingers indicate the direction of the magnetic field.

The magnetic field intensity H is defined by Ampere’s law. According to
Ampere’s law the integral of H [A/m] around a closed path is equal to the
total current passing through the interior of the path (note that a line above
a quantity denotes that it is a vector):

(1.1)H l J S⋅ = ⋅∫∫ d d
Sl
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2 Inductors and Transformers for Power Electronics

where
H is the field intensity vector [A/m]
dl is a vector length element pointing in the direction of the path l [m]
J is the electrical current density vector [A/m2]
dS is a vector area having direction normal to the surface [m2]
l is the length of the circumference of the contour [m]
S is the surface of the contour [m2]

If the currents are carried by wires in a coil with N turns, then

(1.2)

where
i is the current in the coil
N is the number of the turns

The terms  and Ni in Equation (1.2) are equivalent to a source called
magnetomotive force (MMF), which is usually denoted by the symbol F [A ⋅ turns].
Note that the number of turns N does not have dimension, but the value Ni
is an actual MMF and not a current. According to Equation (1.1) the net MMF
around a closed loop with length lc is equal to the total current enclosed by
the loop. Applying Ampere’s law to Fig. 1.1 we obtain

(1.3)

In Fig. 1.1 the reference directions of the current and the H field vector are
shown. The magnetic field intensity H leads to a resulting magnetic flux density
B given by

(1.4)

FIGURE 1.1
Illustration of Ampere’s law. The MMF
around a closed loop is equal to the sum of
the positive and negative currents passing
through the interior of the loop.
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Fundamentals of Magnetic Theory 3

where:
m is a specific characteristic of the magnetic material termed permeability
m0 is the permeability of free space, a constant equal to 4π × 10–7 H/m
mr is the relative permeability of the magnetic material

The value of mr for air and electrical conductors (e.g., copper, aluminum)
is 1. For ferromagnetic materials such as iron, nickel, and cobalt the value
of mr is much higher and varies from several hundred to tens of thousands. 

The magnetic flux density B is also called magnetic induction and, for
simplicity, in this book we will use the term induction for this magnetic
quantity. The vector B is the surface density of the magnetic flux. The scalar
value of the total magnetic flux Φ passing through a surface S is given by

(1.5)

If the induction B is uniform and perpendicular to the whole surface area
Ac, then the expression in Equation (1.5) results in 

Φ = BAc (1.6)

We have to mention that the expression given by Equation (1.1) is not
complete; there is a term missing in the right-hand side. The missing term,
which is a current in fact, is called displacement current and was added to the
expression by Maxwell in 1865. The full form of the law is

(1.7)

where
e is the permittivity of the medium
E is the electric field

Maxwell’s correction to Ampere’s law is important mainly for high-
frequency applications with low current density. In magnetic components
for power electronics the expected current density is of the order of at least
J = 106 A/m2. In all normal applications the second term on the right-hand
side of Equation (1.7) (the Maxwell’s correction) is almost surely not more
than 10 A/m2, and can be neglected. Exceptions are the currents in capacitors,
currents caused by so-called parasitic capacitances, and currents in trans-
mission lines. This conclusion allows us to use the simplified expression in
Equation (1.1) in power electronics magnetic circuit analysis, an approach
called the quasi-static approach.

Φ = ⋅∫ B Sd
S

H l J S E S
l S S

t∫ ∫ ∫⋅ = ⋅ + ∂
∂
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4 Inductors and Transformers for Power Electronics

1.1.2 Faraday’s Law and EMF

A time-changing flux Φ(t) passing through a closed loop (a winding) gen-
erates voltage in the loop. The relationship between the generated voltage v(t)
and the magnetic flux Φ(t) is given by Faraday’s law. According to Faraday’s
law the generated voltage v(t) is

(1.8)

If we denote the intensity of the electric field as E, then Faraday’s law is

(1.9)

Equation (1.9) is valid for the generator convention. For the consumer con-
vention there is no minus sign in it. In this book we use the consumer
convention. The positive senses of B, dl, dS, and the generated electromotive
force (EMF) are shown by arrows in Fig. 1.2.

Faraday’s law is valid in two cases:

• A fixed circuit linked by a time-changing magnetic flux, such as a
transformer

• A moving circuit related to a time-stationary magnetic flux in a way
that produces a time-changing flux passing through the interior of
the circuit.

Rotating electrical machines generate EMF by the latter mechanism.

1.1.3 Lenz’s Law and Gauss’s Law for Magnetic Circuits

Lenz’s law states that the voltage v(t) generated by a fast time-changing
magnetic flux Φ(t) has the direction to drive a current in the closed loop,
which induces a flux that tends to oppose the changes in the applied flux
Φ(t). Figure 1.3 shows an example of Lenz’s law.

FIGURE 1.2
Illustration of Faraday’s law. The voltage v(t)
induced in a closed loop by a time-changing flux
Φ(t) passing the loop (generator convention).
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Fundamentals of Magnetic Theory 5

Lenz’s law is useful for understanding the eddy current effects in magnetic
cores as well in the coil conductors. The eddy currents are one of the major
phenomena causing losses in magnetic cores and in coil conductors.

Gauss’s law for magnetic circuits states that for any closed surface S with
arbitrary form the total flux entering the volume defined by S is exactly equal
to the total flux coming out of the volume. This means that the total resulting
flux through the surface is zero:

(1.10)

Gauss’s law for magnetic circuits is analogous to Kirchoff’s current density
law for electrical circuits.

1.2 Magnetic Materials

Magnetic materials can be classified in three general groups according to
their magnetic properties:

• Diamagnetic materials
• Paramagnetic materials
• Ferromagnetic materials

The relative permeability mr of diamagnetic and paramagnetic materials is
close to unity. The values of B and H are linearly related for both materials.
Diamagnetic materials have a value of mr less than unity, which means that they
tend to slightly exclude magnetic field, that is, a magnetic field intensity is
generally smaller in a diamagnetic material than it would be in a paramag-
netic material under the same conditions. The atoms of diamagnetic materials

FIGURE 1.3
Illustration of Lenz’s law in a closed winding. The applied flux Φ(t) induces current i(t), which
generates induced flux Φι(t) that opposes the changes in Φ(t).
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6 Inductors and Transformers for Power Electronics

do not have permanent magnetic moments. Superconductors are a specific
class of diamagnetic materials. In these materials there are macrocurrents
circulating in the structure. These currents oppose the applied field and as
a result the material excludes all exterior fields. Paramagnetic materials have a
value of mr greater than unity, and they are slightly magnetized by an applied
magnetic field. Ferromagnetic materials are characterized by values of mr much
higher than unity (10–100,000) [1]. For the design of magnetic components
for power electronics, the third type of materials, the ferromagnetic mate-
rials, are of real importance, especially ferromagnetic ceramics and metals.
Comparison of B-H relation of different types of magnetic materials is shown
in Fig. 1.4.

1.2.1 Ferromagnetic Materials

To understand ferromagnetic materials we will start with the magnetic
moments of atoms and the structure of metals. Each electron possesses an
electrical charge and its own magnetic (spin) moment. Besides the spin, each
electron of the atom has another magnetic moment, a so-called orbital
moment, caused by its rotation around the nucleus. In the atoms of many
elements the electrons are arranged in such a way that the net atomic moment
is almost zero. Nevertheless, the atoms of more than one-third of the known
elements possess a magnetic moment. Thus, every single atom of these
elements has a definite magnetic moment as a result of the contributions of
all of its electrons. This magnetic moment can be associated with an atomic
magnet.

In metals there is an interaction between the atoms, which defines the
magnetic properties of the total structure. In most cases the atomic moments
in the crystal are inter-coupled by coupling forces. If the atomic moments
are arranged in parallel with crystal lattice sites, then the moments of the
individual atoms are summed up resulting in the ferromagnetic effect. The
coupling forces in the ferromagnetic materials of technical interest are strong
and at room temperature almost all atomic magnets are parallel-aligned. The
alignment of the atomic magnets does not occur in the entire structure, but
only within certain regions. These regions of alignment of the atomic mag-
nets are called ferromagnetic domains or Weiss domains. In polycrystalline

FIGURE 1.4
Magnetization curves for different types
of magnetic materials. The scale of the
magnetization curve of ferromagnetic ma-
terials is much higher.
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Fundamentals of Magnetic Theory 7

materials they usually have a laminar pattern. The size of the domains varies
considerably, from 0.001 mm3 to 1 mm3. Each domain contains many atoms
and is characterized by an overall magnetic moment, as a result of the
summing of the atomic magnets. The directions of the domain magnetic
moments in an unmagnetized crystal are not completely random among all
available directions. The domain magnetic moments are oriented so as to
minimize the total external field, and in that way to keep the energy content
as low as possible. To follow this rule, adjacent domains have opposite
magnetic moments, as shown in Fig. 1.5. The net external field is reduced
additionally by so-called closure domains, shown in Fig. 1.5.

In every crystal the domains are divided from each other by boundaries,
so-called domain walls or Bloch walls. Across the domain walls the atomic
magnetic moments reverse their direction, as shown in Fig. 1.6

The described mechanism of summing the atomic magnetic moments,
resulting in spontaneous magnetization of the domains in ferromagnetic
materials, is valid until a specific temperature, called the Curie temperature
TC. The value of TC is clearly defined for every material. If the temperature
of the material is increased above that value the thermal oscillations of the
atomic magnets increase significantly and overcome the coupling forces that
maintain the alignment of the atomic magnets in the domains. The final
effect disturbs the alignment of magnetic moments of adjacent atoms. When
a ferromagnetic material is heated above its Curie temperature TC, its mag-
netic properties are completely changed and it behaves like a paramagnetic
material. The permeability of the material drops suddenly to mr ≈ 1, and both
coercivity and remanence become zero (the terms coercivity and remanence
will be discussed in the next section). When the material is cooled, the
alignment of the atomic magnets in the domains will recover, but the mag-
netic moments of the domains will be orientated randomly to each other.

FIGURE 1.5
Orientation of domain magnetic moments in
the structure of unmagnetized iron.

FIGURE 1.6
Domain (Bloch) walls.
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8 Inductors and Transformers for Power Electronics

Thus, the total external field in the structure will be zero. This means that
heating a ferromagnetic material above TC demagnetizes it completely. The
Curie temperatures of various ferromagnetic elements and materials are
shown in Table 1.1.

1.2.2 Magnetization Processes

Each crystal of a ferromagnetic material contains many domains. The shape,
size, and magnetic orientation of these domains depend on the level and
direction of the applied external field.

Let us start with an unmagnetized sample of a ferromagnetic material
(Fig. 1.7, a). Suppose an external magnetic field Hext in a direction parallel of
the domain magnetic moments. With increasing intensity of the applied field
the domain walls begin to move (wall displacement), first slowly, then quickly,
and at the end, in jumps. In the presence of an external field the atomic
magnets are subjected to a torque, which tends to align them with the
direction of the applied field. The magnetic moments that are in the direction
of Hext do not experience a resulting torque. The magnetic moments that are
not aligned with Hext are subjected to a torque tending to rotate them in the
direction of Hext. As a result, the overall domain wall structure becomes
mobile and the domains that are in the direction of the applied external field
Hext increase in size by the movement of the domain walls into the domains
with direction opposite to Hext (Fig. 1.7b). There will be a net magnetic flux
in the sample. The magnetization, which is the average value per unit volume
of all atomic magnets, is increased.

When the applied external field Hext is small, the described domain wall
displacements are reversible. When Hext is strong, nonelastic wall displace-
ments occur, which cause hysteresis in the B-H relation. Above a certain level
of the applied external field, Barkhausen jumps of the domain walls occur
(Fig. 1.7c). By these jumps, a domain having the direction of the applied
field absorbs an adjacent domain with a direction opposite to the applied
field.

TABLE 1.1

Curie Temperatures of Various Ferromagnetic Elements
and Materials

Material Curie temperature, TC, [ºC]

Iron 770
Cobalt 1130
Nickel 358
Gadolinium 16
Terfenol 380–430
Alnico 850
Hard ferrites 400–700
Soft ferrites 125–450
Amorphous materials 350–400
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Fundamentals of Magnetic Theory 9

When the strength of the applied external field Hext is increased further, the
process of domain rotation occurs. The domain magnetic moments rotate in
order to align themselves to the direction of Hext, thus increasing the magne-
tization. The process tends to align the domains more to the direction of the
applied external field in spite of their initial direction along the crystal axes.

The total magnetization process includes domain wall displacements and
jumps and domain rotations. In the case of ferromagnetic metals, at the start
the process is realized mainly by means of the wall displacements and jumps,
and the rotations of the whole domains take place at the end of the process,
doing the final alignment in the preferred directions, defined by the external
field.

For further reading, the magnetization processes are described in detail in
standard texts [1,2].

1.2.3 Hysteresis Loop

Let us suppose a magnetic core with a coil, as shown in Fig. 1.8. At the
beginning, the net magnetic flux B in the core, the current i in the coil, and
the magnetic field intensity H are zero. Increasing the current in the coil
results in applying the field with intensity H according the Ampere’s law

FIGURE 1.7
Magnetization of a ferromagnetic sample: (a) without applied external field; (b) with applied
external field Hext–movement of the domain walls; (c) with applied external field Hext–rotation
of the domain magnetic moments.

FIGURE 1.8
Magnetic core with a coil.
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10 Inductors and Transformers for Power Electronics

(Hlc = Ni, assuming that H is uniform in the core). The first, slowly rising
initial section of the magnetization curve, Fig. 1.9, corresponds to reversible
domain walls displacements. In the second section of the curve, the induction
B increases much more quickly with the increase of H and the curve is steep.
The significant increase of B in the second section is explained with the
Barkhausen jumps of the domain walls, which occur when the applied
external field intensity reaches a necessary level. At the end of this section
the structure of the ferromagnetic material contains mainly domains, which
are almost aligned along the crystal axes nearest to the direction of the
applied external field. The increase of the magnetic flux in the material is
not any more possible by domain wall motion. Further increase in H to larger
values results in non-significant increase in B. and the third section of the
magnetization curve is flat. Because the level of H is already much greater
than in section 1 and 2, it is enough to initiate the domain rotation process.
The contribution of this process to the total magnetic flux is relatively small
and gradually decreases. The material reaches saturation and further
increase in H results in very small increase in B. The maximum value of B:
the saturation induction value Bsat, is practically reached. All the atomic mag-
nets are aligned along the direction of the applied external field H.

Let us observe the process of decreasing H, which means decreasing the
excitation current i in the coil. The first reaction of reducing H is the rotation
of the domains back to their preferred initial directions in parallel with the
crystal axes. Further, some domain walls move back in their initial positions,
but most of the domain walls remain in the positions reached in the wall
displacement process. Thus, the flux B does not return along the same curve,
along which it rises with increasing H. The new curve, observed with reduc-
ing H, lags behind the initial magnetization curve. When H reaches zero,

FIGURE 1.9
Hysteresis loop and magnetization curve of a ferromagnetic material.
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Fundamentals of Magnetic Theory 11

residual flux density or remanence, Br, remains mainly due to non-elastic
wall displacement process. To reduce this residual flux density Br to zero, a
negative (reversed) field H is necessary to be applied. That field should be
sufficient to restore the initial positions of the domain walls. The negative
value of H at which B is reduced to zero is called coercive force or coercivity
of the material Hc. A further increase of H in the opposite direction results
in a process of magnetization as the one described above and B reaches
saturation level −Bsat, (|−Bsat|= Bsat). If the current of the excitation coil is
repeatedly cycling between the two opposite extreme values, corresponding
to the two opposite maximum values of H, the hysteresis loop is traced out,
as shown in Fig. 1.9.

The hysteresis loop gives the relation between the induction B and the flux
intensity H for a closed reversal cycle of magnetization of a ferromagnetic
material. The shape of the hysteresis loop is material dependent. Other
factors that influence the shape are the excitation frequency and the condi-
tions of the treatment of the material. Some typical hysteresis loops are
shown in Fig. 1.10.

The surface of the loop in the B–H plane is the energy loss per volume for
one cycle.

According to their coercive force Hc the ferromagnetic materials are sub-
divided in two general classes:

• Soft magnetic materials
• Hard magnetic materials

Soft magnetic materials are characterized by an ease of change of magnetic
alignment in their structure. This fact results in low coercive force Hc and a
narrow hysteresis loop as shown in Fig. 1.11. Soft magnetic materials are of
main importance for modern electrical engineering and electronics and are
indispensable for many devices and applications. In power electronics most
of the magnetic components use cores made from soft magnetic materials.

FIGURE 1.10
Typical hysteresis loop shapes: (a) round loop, R-type; (b) rectangular loop, Z-type; (c) flat loop,
F-type.
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12 Inductors and Transformers for Power Electronics

Hard magnetic materials are also called permanent magnets. The initial
alignment of the magnetic moments in hard magnetic materials strongly
resists any influence of an external magnetic field and the coercive force Hc

is much higher than  that of soft magnetic materials. Another important
property of permanent magnets is their high value of the remanence induc-
tion Br. A typical hysteresis loop of a permanent magnet is shown in Fig. 1.11.
The permanent magnets produce flux even without any external field. The
typical applications of permanent magnets are in electrical motors, genera-
tors, sensing devices, and mechanical holding.

The following ranges can be used as approximate criteria for classifying
a material as a soft or hard magnetic material [2]:

Hc < 1000 A/m soft magnetic material
Hc > 10 000 A/m hard magnetic material

Usually, the values of Hc of most of the used in practice materials are
Hc < 400 A/m for soft materials and Hc > 100,000 A/m for hard magnetic
materials.

1.2.4 Permeability

Permeability is an important property of magnetic materials and therefore we
will discuss it in detail. The relative permeability μr introduced in Section 1.1
has several different interpretations depending on the specific conditions of
defining and measuring it. The index r is omitted and only the corresponding
index is used in denoting the different versions: amplitude permeability ma,
initial permeability mi, effective permeability me, incremental permeability min,
reversible permeability mrev, and complex permeability m.

FIGURE 1.11
Typical hysteresis loops: (a) a sof magnet-
ic material, narrow loop, low Hc; (b) a
hard magnetic material, square loop, high
Hc and Br.

Hard
magnetic

Soft
magnetic

B

H

Copyright 2005 by Taylor & Francis Group, LLCCopyright 2005 by Taylor & Francis Group, LLC



Fundamentals of Magnetic Theory 13

Amplitude permeability ma is the relative permeability under alternating
external field H, which gives the relation between the peak value of the
induction B and the magnetic field H. Its general definition is

(1.11)

where
 is the amplitude induction value averaged out over the core cross-section
 is the amplitude field parallel to the surface of the core

The initial permeability mi is the relative permeability of the magnetic mate-
rial when the applied magnetic field H is very low:

(1.12)

For practical purposes the value obtained at a small field H is standardized
[2], e.g., as the permeability at H = 0.4 A/m (see Fig. 1.12).

If there is an air gap in a closed magnetic circuit, the apparent total per-
meability of the circuit is called effective permeability me, which is much lower
than the permeability of the same core without an air gap. The effective
permeability depends on the initial permeability mi of the magnetic material
and the dimensions of the core and the air gap. For cores with relatively
small (short) air gaps the effective permeability is given by

(1.13)

where
Ag is the cross-sectional area of the air gap
lc is the effective length of the magnetic path

FIGURE 1.12
Definition of μi, μ4, and μΔ dependent on the
field H.

m
ma

o

B
H

= 1 ˆ
ˆ

B̂
Ĥ
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14 Inductors and Transformers for Power Electronics

If the air gap is long, some part of the flux passes outside the air gap and
this additional flux results in an increased value of the effective permeability
in comparison with Equation (1.13). Therefore Equation (1.13) is valid only
when fringing permeability is neglected. The effective permeability is also
known as the permeability of an equivalent homogeneous toroidal core.

Incremental permeability mΔ is defined when an alternating magnetic field
HAC is superimposed on a static magnetic field HDC. The hysteresis loop
follows a minor loop path. The incremental permeability is

(1.14)

The limiting value of the incremental permeability min, when the amplitude
of the alternating field excitation HAC is very small, is termed reversible per-
meability mrev (see Fig. 1.13):

(1.15)

1.2.4.1 Complex Permeability

In practice, we never have an ideal inductance when the core is made from
a magnetic material. Under sinusoidal excitation there is a phase shift
between the fundamental components of the induction B and the magnetic
field H. By using a complex quantity for the relative permeability, consisting
of a real part and an imaginary part, these effects are easily presented. The
imaginary part of the complex permeability μ is associated with the losses in
the material. There are two different forms of the complex permeability μ.

• Series representation, according to the series equivalent circuit of
magnetic component shown in Fig. 1.14a:

(1.16)

FIGURE 1.13
Definition of the reversible permeability μrev.
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where
 are the real and imaginary parts of the complex permeability

• Parallel representation, according to the parallel equivalent circuit
shown in Fig. 1.14b):

(1.17)

where
 are the real and imaginary parts of the complex permeability

In Fig. 1.15 the complex permeability is represented by the series terms in
the frequency domain. These values are often given in the data to describe the
behavior of the material at very low induction levels (signal applications). The
graphs of the real and imaginary parts versus frequency are often shown to
describe the frequency behavior of the material. The values of the real and
imaginary parts of the complex permeability in the series presentation for a
given frequency can be calculated form the measured inductance Ls and resis-
tance Rs of the coil of it series equivalent circuit.

The parallel representation has the advantage that the loss associated part
 does not change when an air gap is added in the magnetic circuit. Usually

in applications the induction B is known, which allows the calculation of the
losses directly by using  The parallel representation is more often used
in power applications.

FIGURE 1.14
Series and parallel equivalent circuits.

FIGURE 1.15
Complex permeability presented by the series
terms in the frequency domain.
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16 Inductors and Transformers for Power Electronics

Depending on the application and purpose, the series or parallel presen-
tation may be used. The following expressions give the relation between the
series and parallel presentation parts of the complex permeability:

(1.18)

(1.19)

In Equations (1.18) (1.19) δ is the loss angle, which is also the phase lag of
the induction B with respect to the applied magnetic field H. The tangent of
the loss angle δ is given by the expression

(1.20)

The quantity tan δ is also the ratio of the equivalent series resistance of a
coil (neglecting copper resistance) to its reactance, which is the reciprocal
value of quality factor of the inductance: 

(1.21)

The complex permeability is mainly used in signal electronics and for low
induction levels and is less often used in power electronics. In power elec-
tronics the magnetic materials have a nonlinear frequency behavior. We
would like to warn the reader that if the ferrite losses at high induction levels
are estimated by m’ and m” values, which are relevant at low induction levels,
then the losses can be severely underestimated. The reason is that the losses
in the ferrites increase more than the square of the induction B.

1.2.4.2 Hysteresis Material Constant

The losses of some ferrite grades are described using the hysteresis constant
hB, which is defined at low induction levels. The hysteresis constant hB is
defined by the following expression [7]:

(1.22)

where
 is the amplitude of the induction B

me is the effective permeability

The hysteresis losses increase when the induction in a core increases. The
contribution of the hysteresis losses to the total losses can be estimated by
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means of the results of two measurements, usually at the induction levels
1.5 mT and 3 mT [4]. By these measurements the hysteresis constant hB is
found from

(1.23)

and then it is used to find dh by Equation (1.22).
The consequence of this behavior is that at low B values the losses tent to

increase with B2, whereas at large B values the dependence is close to B3.

1.3 Magnetic Circuits

1.3.1 Basic Laws for Magnetic Circuits

According to Ampere’s law, the sum of the MMF around a closed magnetic
loop is zero:

(1.24)

This requirement is analogous to the Kirchoff’s voltage law. The MMFdrop

for an element of a magnetic circuit is

MMFdrop = Hl [A ⋅ turns] (1.25)

Substituting H = B/m and B = Φ/Ac results in the following expressions:

(1.26)

(1.27)

In Equation (1.26) the magnetic flux Φ is analogous to current I, and the
quantity ℜ = l/μAc is analogous to resistance R. The quantity ℜ = l/μAc

[A ⋅ turns/Wb] is called reluctance and we will use the symbol ℜ for it. The
quantity 1/ℜ [Wb/A ⋅ turns] is called permeance Λ of the magnetic path (in
soft ferrites data this value is often denoted as AL value).

For a magnetic circuit with an air gap (Fig. 1.16), by splitting the left side
into two terms and assuming that H is almost uniform in both mediums,
the Ampere’s law can be written as

(1.28)

h d
mB

e B
= Δ

Δ
tan

ˆ

MMF MMF MMFloop source drop,= =∑ ∑∑0

MMF
l
Ac

drop∫ = = ℜ =Φ Φ Φ
Λm

H l F= ℜ ⇒ = ℜΦ Φ

H l H l NIc c g g+ =
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where
Hc and Hg are the field intensity in the core and in the air gap, respectively
lc is the magnetic path length in core
lg is the length of air gap

Considering Fig. 1.16, the application of Gauss’s law for a closed surface
crossing the core and the air gap and including the total transition surface
between them, gives the expression

(1.29)

which yields

Φc = Φg = Φ (1.30)

Equation (1.28) can be rewritten as

(1.31)

where
Φc is the magnetic flux in the core
Φg is the magnetic flux in the air
ℜc is the reluctance of core path
ℜg is the reluctance of the air gap

Equations (1.29) and (1.30) are valid only for small air gaps. At larger air
gaps, the flux tends to the outside. In contrast to electrical circuits true
“insulation“ is not present, as the relative permeability of air equals 1, which
is nonzero.

FIGURE 1.16
Magnetic circuit with an air gap: (a) physical geometry; (b) equivalent circuit scheme.
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The application of Gauss’s law for a node of a magnetic circuit gives the
result that the algebraic sum of fluxes coming out of the node is equal to
zero, as it is shown in Fig. 1.17:

(1.32)

Equation (1.32) is analogous to Kirchoff’s current law.
For further reading, magnetic circuits and components are presented in a

suitable way for the needs and the applications of power electronics in
textbooks on power electronics [3,4,5]. Electromagnetic concepts and appli-
cations are described in detail in Marshall et al. [6].

1.3.2 Inductance

1.3.2.1 Flux Linkage

First, we will define the term flux linkage, Ψ (flux linked to all turns). The
instantaneous voltage across a coil can be presented as

(1.33)

where R is the ohmic resistance of the coil, i(t) is the coil current and e(t) is
the electromotive force.

From that expression we define the term Ψ(t):

(1.34)

with dimension [Weber] or [V ⋅ s].
We prefer [V ⋅ s], as it reminds that the quantity is a flux linkage and not

a physical flux.

FIGURE 1.17
Application of Gauss’s law to a node of a magnetic circuit.
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1.3.2.2 Inductance: Definitions

The term inductance can be defined in different ways with respect to the
nonlinearity of the B-H dependence. For simplicity, we do not consider core
losses in this section. Here we explain the different definitions and presenta-
tions of the term inductance.

Chord Inductance or Amplitude Inductance

The slope of the chord in the curve Ψ = Ψ(t) is called chord inductance or
amplitude inductance (see Fig. 1.18a), and is denoted Lc, La, or simply L:

[H] (Henry) or [Ω ⋅ s] (1.35)

Differential Inductance

The (derivative) of the flux linkage Ψ = Ψ (i) is the differential inductance Ld.
This inductance is observed when small signals are superimposed to the coil
current i.

(1.36)

Note that with material having hysteresis losses, see Fig. 1.18b, a minor
loop is observed resulting in a lower small signal inductance, called reversible
inductance:

(1.37)

FIGURE 1.18
Flux linkage Ψ as a function of current i and definitions of Lc, Ld, and Lr.
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